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Abstract-A combined Eulerian-Lagrangian numerical method is developed for simulating deformed 
interfaces arising in the solidification of pure materials. The interface tracking procedure employs marker 
particles and is the Lagrangian component of the calculation. me f&d equations are soived in a fixed 
Eulerian framework, so that the interface passes through the grid layout. Information from the explicitly 
tracked interface. is used to apply boundary conditions at the exact interface location in each computational 
cell, in contrast with other Eulerian schemes. Consistent with the the estabiished theory, in the absence of 
surface tension, the present simulations result in different types of behavior such as tip-splitting and cusp 
formation. For low surface tensions, due to the lack of physical length scales, the solutions are qualitatively 
affected by grid resolution with no unique solution available. In contrast, with sub%antial surface tension 
values the initial perturbation grows to form long fingers. The finger shapes reflect the stabilizing effects of 

capillarity. Unique solutions can be reached with nonzero surface tension. 

1. lNTRODUCTlON 

Numerous physical systems, in natural as well as man 
made environments, contain interfaces demarcating 
regions of distinct physico-chemical properties [ 1, 21. 
The interfaces in these systems may be idealized as 
discontinuities across which compositions, phases, 
material properties and flow features change rapidly. 
Under certain conditions, usually characterized by 
one or more control parameters, these interfaces 
experience instabilities such as in viscous fingering 
[3-s], solidification [I, 2, 6, 71, and other phenomena 
(8-1 I]. Typically, a cascade of interfacial instabilities 
leads to the formation of patterns and morphological 
structures reflecting the interaction of the microscopic 
and macroscopic properties of the system. For exam- 
ple, the formation of deep cells in the growth of impure 
(i.e. multi-component) materials has considerable sig- 
nificance in regard to the resulting compositional 
inhomogeneities (segregution), which may affect the 
performance and properties of doped semiconductors 
and the structural integrity of alloy materials [6,7]. 

Conventionally, the onset and linear growth of dis- 
turbances in the above mentioned phenomena have 
been investigated using linear stability theory. Weakly 
nonlinear analyses in extension of the onset behavior 
have also been performed [12]. However, far from 
onset, the interfaces undergo successive instabilities of 
various types and in some systems the final observed 
pattern may deviate significantly from that predicted 
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by linear stability analyses. In other cases, the insta- 
bility may be triggered by large amplitude dis- 
turbances and such subcritical phenomena are obvi- 
ously not accessible to linear stability considerations. 
The mechanisms by which the nonlinear phenomena 
induce reorganizations and coherent patterns in 
unstable systems are not therefore clarified by analyses 
restricted to small perturbations. Thus, sufficient 
motivation exists for developing general investigative 
capabilities in order to study the above mentioned 
phenomena in their highly non-linear stages. This 
regime is most accessMe to laboratory and com- 
putational experiments. The effort presented herein is 
devoted to developing a tool for computational study 
of the instability of interfaces far into the nonlinear 
growth stages. 

We choose, as our model system, the growth 
of crystals of pure materials from the melt. The 
mechanisms of instability and various aspects of pat- 
tern selection and transport phenomena have been 
thoroughly investigated over the years and the litera- 
ture abounds in refs. [12-161. Thus, we detail only 
such features of the morphological evolution as are 
necessary to provide a motivation for the numerical 
procedure developed here. 

Consider the typical crystal growth situation 
depicted in Fig. l(a). Let the wall on the liquid side 
be maintained at a temperature T, such that T, < T,,,, 
the melting temperature of the material, i.e. the melt 
is undercooled. The interface between solid and liquid 
corresponds approximately to the isotherm 
T (x, t) = T,,,. Thus, the protrusion of the bump into 
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area 
specific heat at constant pressure 
capillary length scale 
indices 
thermal conductivity 
thermal boundary layer thickness 
latent heat of fusion 
non-dimensional normal vector 
dimensional normal vector 
radius of curvature 
interface position 
Stefan number 
non-dimensional time 
dimensional temperature 
front velocity 
non-dimensional coordinates 

Y surface tension 

; 
surface curvature 
arclength 

I a constant, equation (23) 
1, morphological length scale 
V non-dimensional velocity of front 
4 angle measured from the horizontal 
P density 
z time scale 
e non-dimensional temperature 
7. non-dimensional domain size. 

Subscripts 
i interface 
1 liquid 
m melting point value 

(X, Y) dimensional coordinates. 

Greek symbols 

; 
thermal diffusivity 
a constant, equation (19) 

A undercooling 
e1, E2 scaling constants 

n normal direction 
0 initial condition 
S solid 
t tip value. 

Superscripts 
* non-dimensional value. 

the liquid leads to a clustering of the isotherms in 
the vicinity of the tip, implying a higher temperature 
gradient there. The bump is thereby induced to lose 
latent heat more rapidly in comparison with the other 
regions of the interface, which causes the disturbance 
to run away to form a finger. For growth of an 
unstable front in the pure material system, the avail- 
able exact solutions were obtained by Ivantsov [12, 
14-161 in the form of paraboloids of revolution. These 
solutions have the property that, for given values of 
undercooling, they represent a continuous family of 
solutions, and specify only the combination R, V,, 
where R, is the tip radius and V, is the tip velocity of 
the paraboloid. However, it is observed that the tip 
radius and velocity assume unique values as functions 
of undercooling in real growth systems [14]. Thus, 
a selection mechanism is missing from the Ivantsov 
model, which fails to take account of an important 
physical ingredient, namely surface tension (y). Sur- 
face tension appears as the controlling factor, to select 
a discrete set of solutions from the continuum of solu- 
tions [l]. The stabilization of the interface is 
accomplished by surface tension by modifying the 
interfacial temperature, which no longer corresponds 
to the T, isotherm. In particular, in two dimensions 
the Gibbs-Thomson condition for the interfacial tem- 
perature reads 

Ti=Tm (1) 

where y(4) is the surface tension, 4 is the angle 

between the normal and the x-axis, L is the latent heat 
of fusion and K is the interfacial curvature [7J. The 
dependence on orientation, i.e. the surface tension 
anisotropy, is a reflection of the underlying solid lat- 
tice structure. From equation (l), it is evident that 
surface tension depresses the temperature at the tip, 
reducing the effective undercooling there, and pro- 
viding a stabilizing effect. In essence, surface tension, 
reflecting the existence of a critical nucleation radius, 
provides a short wavelength cutoff for the instabilities. 
The selected dendrite tip is highly sensitive to noise 
and behaves like an amplifier [17]. Thus, the final 
shape of the crystal is not usually represented by a 
smooth paraboloid, but a highly branched structure, 
with successive instabilities ensuing on sidebranches 
at different scales [14]. 

Recently, much interest has also been generated in 
regard to the effects of convection, natural and forced, 
on the macroscopic and microscopic interfacial 
characteristics [16, 18, 191, motivated by low-gravity 
crystal growth experiments [20], and the possibility 
of controlling microstructure using forced convection 
[21]. Convection further complicates the issues by 
bringing in length and time scales disparate from the 
interfacial instability phenomena, and breaking sym- 
metry. While phenomena at the macroscopic scale 
have been well investigated [16], at the morphological 
scales studies thus far have only been of an idealized 
nature. These effects will be studied in the future, by 
extending the numerical methods presented in this 
work. 



Simulation of interfacial instabilities during solidification-1 2059 

(b) 

T = T, LIQUID T = T, 

* 

trol Volume markers 

xhorzha& yhorzhurf 

Fig. 1. Illustration of physical and computational arrangements involving irregular interfaces. (a) Typical 
crystal growth situation involving an undercooled melt showing clustering of isotherms in front of the 
bump. (b) Arrangement of interfacial and control volume markers and definition of a typical control 

volume. n and n+ 1 are indices of the control volume markers. 

In our previous effort [22] we developed an interface 
tracking procedure that can handle highly deformed 
interfaces and surmounts the conventionally accepted 
difficulty in handling topological changes. In the con- 
text of Lagrangian methods, Glimm et al. [23] have 
applied similar approaches to perform merger/ 
breakup operations for the viscous fingering problem. 
In the approach presented here, we seek to exploit the 
knowledge of exact interfacial location in formulating 
conservative and consistent differencing schemes via 
the control volume formulation. This is the advantage 
that the surface-tracking method [22-331 affords in 
contrast to volume-tracking schemes [34-391. Per- 
forming the calculations on a stationary Cartesian 
grid yields conveniently to a control volume for- 
mulation [40, 411 and iterative line solvers. Thus far, 
Cartesian grid methods have either been restricted to 
volume-tracking procedures or have failed to exploit 
the explicit specification of the interface position. In 
other cases, such as in [29, 421, particle tracking has 
been employed. However, in each case the exact 
boundary conditions have not been rigorously applied 
in the finite difference formulation. The concern in 
these works was not directed as in our case, on con- 
servation across the interface. Cartesian grid solutions 

for arbitrarily shaped bodies which pass through the 
grid, have been advanced recently for inviscid flow 
over stationary obstacles [43,44]. While more detailed 
assessment is needed, the use of iixed grids with cell 
partition technique to accommodate the irregular 
internal boundary appears promising. 

In the present problem, the interface grows in per- 
imeter in the course of the instability. Interfaces may 
merge or fragment. The solution procedure is there- 
fore required to follow the evolution of an interface 
under these circumstances. The behavior of the inter- 
face is very sensitive to the intricate details of the 
boundary conditions applied at the interface. In par- 
ticular, as we demonstrate later, surface tension is a 
delicate mechanism but has a significant effect on the 
finally attained shape. Since the surface tension mul- 
tiplies the curvature of the interface, the numerical 
scheme is required to compute the interface shape and 
the first and second derivatives of the interfacial curve 
accurately in order to faithfully represent the physics. 
The interface velocity is given, in the case of sol- 
idification by the expression [ 161 

pLV,, = (k,VT,-k,VT,)*N. (2) 

Here, p, L, V,, and k are respectively density, latent 
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heat, normal velocity of the interface and thermal 
conductivity, N is the normal to the interface and the 
subscripts 1,s represent liquid and solid phases. This is 
in fact the statement of conservation of energy for a 
control volume positioned at the interface. Thus, 
unless a field equation solver is developed to enforce 
this condition strictly at the interface, the interfacial 
velocity will be inaccurately obtained. 

Keeping in view the requirements imposed on the 
numerical method by the physics detailed above, we 
design a solution methodology to track highly dis- 
torted fronts over the grid layout shown in Fig. 1 (b). 
Two primary tasks are involved in simulating the crys- 
tal growth phenomenon, namely, interface tracking 
and solution of the field equations. The details are 
presented in Section 3. There is no ambiguity regard- 
ing the location of the interface, and the evaluation of 
heat fluxes through each face of the irregular poly- 
gonal control volume is performed by conventional 
methods [40,41]. 

2. FORMULAlION 
The following equations are solved on the domain 

displayed in Fig. 2. 
Heat conduction in each phase 

aT 
-=c+V’T, i=l,s 
a, 

(3) 

and conservation across the interface, yielding an 
expression for the interfacial velocity, equation (2), 
with the boundary conditions : 

T(X, Y,, t) = T, at the fop (liquid side) and 
T(X, 0, t) = T, at the bottom (solid side), with tem- 
perature continuity, T,(Xi, yi, t) = T,(X,, z,,t) at the 
interface. (4) 

At the sides of the domain adiabatic conditions are 
imposed, i.e. 

Jg(O, Y, t) = !g(E, Y, t) = 0 (5) 

where E is the extent of the domain, along the x- 
direction in Fig. 2. 

At the interface, the Gibbs-Thomson condition [ 161 
is applied, in the form 

T = Tm Cl- (~40) (6) 

where surface tension is considered to be isotropic for 
simplicity. 

It is important, in simulating the morphological 
instability phenomena, to take account of the length 
and time scales of the physical mechanisms. Linear 
stability analysis of a planar interface indicates that 
the critical wavelength for morphological stability is 
given by [ 131 

& = o(m). (7) 

Here, d, = y/L is the capillary length scale of the order 
of Angstroms, f, is the thermal diffusion length scale, 
typically of 0 (mm). Thus, 1, = 0 @m). The insta- 
bility events that we are interested in all occur at the 
scale of I,. Thus, as described in ref. [26], the chosen 
scales are I, for the length scale, and A&/l= for the 
temperatures scale, where A, the applied under- 
cooling = Tt- T,,,, TL being the temperature at the 
liquid boundary. The velocity scale is chosen to be 
Y = O(Sttl,./l& where a,_ is the thermal diffusivity, 
St is Stefan number, defined as C; A/L (C,, is the 
specific heat), and the time scale of motion of the 
interface is z = 1J”Y = &juLSt. 

Non-dimensionalizing the equations above with the 
scales decided upon, and defining a field 
Bi = T: - T,$, where T* represents the non-dimen- 
sional temperature, we obtain the following equations 
for e,, 

) = ymean + O.l(l - 2cos+ 

Adiabatic Bo 

E-=-l 

Fig. 2. Illustration of computational domain and boundary conditions in non-dimensional form. 
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1, l,sts = v**e, i=l,s 

where ,&/I= c< 1 and the starred quantities are dimen- 
sionless. For the small &fan numbers, i.e. under- 

in cryfatal growth exper- 

non-dimensional velocity v, now reads 

ae ks ae V" = -an,*+zJq > 
with the boundary conditions, 6(x,ys, t) = 0s and 
8(x, y,, t) = 6,_ at the solid and liquid boundaries, 
(x, y) are now non-dimensional coordinates, v, is the 
dimensionless velocity and n* is non-dimensional nor- 
mal vector. 

The Gibbs-Thomson condition assumes the form, 
t$ = -&&,,y*K* = -y&*, where & = d&I, and we 
designate yeff = s2Bmy* to be the effective surface 
tension. The adiabatic boundary conditions are 

ae 
-=0 at x=0, x=x an* (10) 

where x = Z/n, is the non-dimensional domain length 
in the x-direction. It is noted that yeE now contains T,,, 
and sp and is dependent on both material properties 
and operating conditions. 

Since equation (8) has the small parameter E, in 
front of the time derivative, the temperature field is 
nearly quasi-stationary. Thus, the solution to the 
Laplace equation is imposed as the initial temperature 
field in each phase. The interface is perturbed in the 
form, f(x, y, 0) = ymean -I- 0. 1 (1 - 2 cos Qnx/x)). A 
ymean value of 10.5 was specified in the simulations 
presented here. The evolution of this initial per- 
turbation was then followed in time. 

3. THE SOLUTION METHODOLOGY 

Consider the situation depicted in Fig. l(b), which 
shows an interface lying arbitrarily on a grid rep- 
resenting part of the computational domain. The 
inter-facial curve, as explained in [22], is tracked with 
the aid of marker particles indicated by crosses in the 
figure. Two primary tasks are to be performed in 
advancing the interface and thermal field in time as 
described below. 

Given the interface position, the thermal field cal- 
culations involve the following procedures : 

3.1. To classify the control volumes and associate with 
them the indices of the control volume markers, tf any, 
tying on the faces of the volumes. Only two faces of the 
cell are allowed to be cut by the interface as part of the 
marker advancing procedure 

Let us fnst gather all the pieces of information that 
knowledge of the interface location provides. Con- 
sider Fig l(b). Joining the interfacial markers (Xs) 
with straight line segments one identifies the inter- 

facial control volumes and obtains the control volume 
markers (filled squares), from the intersection of these 
segments with the grid lines. The straight line segments 
are consistent with the second-order accurate control 
volume formulation, where the field variable is 
assumed to vary linearly between control points. The 
identified interfacial cells are stored in a one-dimen- 
sional array. In each cell, the indices of the control 
volume (CV) markers are stored. Considering a typi- 
cal control volume as in Fig. l(b) and knowing the x 
and y locations of CV markers indexed n and n+ 1, 
other necessary details can be easily extracted to gain 
complete knowledge of the configuration of the con- 
trol volume. In particular the intersection of the inter- 
facial segment shown with the vertical and horizon- 
tal half cell lines are obtained. These are stored in 
arrays xverthalf(i, j),yverthalf(i,j), and xhorzhalf- 
(i, j),yhorzhalf(i, j). For cells in which the horizontal 
or vertical halfcell lines are not cut, the initial negative 
values assigned to these arrays are retained. Also, the 
midpoint of the interfacial segment is identified, and 
designated xmid(i,j),ymid(i,j). Thus, each interfacial 
cell is fully characterized in terms of the manner in 
which it is cut by the interface. 

3.2. To identifv the phase of each computational cell 
This is easily done employing the data from Section 

3.1. One traverses each column of cells starting from 
j = 1, where a flag is initialized to solid. Upon encoun- 
tering a cell in which an interfacial segment lies, one 
determines whether the segment has crossed the ver- 
tical half-line in that cell. Three cases are likely as 
shown in Fig. 3(a). In case a, since yverthalf(i,j) lies 
below the control point (ij), the flag is set to liquid 
in cell nj and the control point (i,j) is identified as 
lying in the liquid phase. In case b, since yverthalf(i, j) 
lies above the control point (i,j), the flag is set to 
liquid, while the control point (i,j) is identified as 
solid. This is done so that when the phase of cell nj+ 1 
is being decided upon, the control point in that cell is 
identified by the flag as liquid. In case c, since the 
vertical half-cell line is not cut by the interface in cell 
nj, the flag is retained as solid, and the identification 
of cell nj+ 1 as a liquid cell takes place in that cell. 
This procedure of flag resetting is repeated upon en- 
countering an interfacial cell once more in that column. 

3.3. Assemble the control volumes and compute the 
Jluxes to ensure conservation 

Here, a careful rethinking of conventional differ- 
encing @cedurea is called for. Consider again the 
situati$n shown in Fig. 1 (b). As a first step the control 
volume formulation is to be generalimd to the poly- 
gonal (maximum five-sided) control volumes that 
occur at the interface. One applies Green’s theorem 
ta the typical control volume shown in Fig. 3(b). For 
the heat conduction equation 

ae 
&, - = v**e at* (11) 
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AX 

Fig. 3. Identification and nomenclature of interfacial cells. (a) Cases in the identification of phase of control 
volumes. (b) Nomenclature of control volume sides and dimensions. 

integrating over the control volume for the 2D situ- 
ation, one has 

s E EdA- - V*‘OdA. 
A 1 at* s 

(12) 
A 

Upon applying the divergence theorem, one obtains, 

s 8 -$A= 
A  1 at* 4 (V*O * n) dl (13) 

where the line integral on the right represents the 
summation of normal fluxes out of the control volume 
faces. Writing the above equation in summation form, 

The terms (86/&r), here are the normal gradients at 
each control volume face, dli are the lengths of the 
control volume faces and m denotes the number of 
control volume sides (4 or 5) and A,j is the area of the 
control volume (i,j). The superscript on the right hand 
side implies that an implicit scheme is to be employed. 
For the control volume shown in Fig. 3(b), the fluxes 
on faces numbered 2, 3 and 4 are easily determined. 
For example, for side 2 we write 

ae k+’ 0 #+I .-#+I 
I+ ‘,J 1.1 an,= Ax (15) 

where Ax is the grid spacing as shown in the figure. 
Thus the flux through face 2 is obtained from, 

The length of side 2 is easily determined from the 
details provided by operations in 3.1. The flux through 
the interfacial segment, side 5, is crucial as far as 
interfacial behavior is concerned and will be discussed 
next. Before we proceed with the description of the 
method to evaluate (8/&r),, we call attention to the 
interfacial normal velocity expression, equation (9). 
The calculation of (8/&z), serves two purposes. First, 
it supplies the interfacial heat flux to the temperature 
field calculation. Second, this quantity will be required 

in computing the interfacial velocity. The fact that the 
same procedure is used for both purposes renders the 
interface propagation computations consistent with 
the field solver. 

Now consider the cell (i,j) shown in Fig 3(b). In 
order to obtain the normal gradient at the interfacial 
segment in that cell, (@/an), , we project a probe into 
each phase in the direction of the normal to the inter- 
face at that segment. Let the normal be given by 
n = n>+n,j. Let the length of the probe be dp. This 
length is chosen so that the endpoint xrexyrefof the 
probe lies in an adjacent cell. Thus an appropriate 
value of dp would be the length of the diagonal of the 
computational cell, which will ensure this condition 
for all orientations of the interface. Thus, 
dp = ,/(Ax’ + Ay’) is assigned. The probe then is 
given by, d, = a#z,i+ ny j). If the value of temperature 
at the end point of the probe, xref,yref shown in Fig. 
4 can be obtained, then, 

ae 0 an,= 
e(xref,yref,t) -dO(xmid,ymid,t) (17) 

P 

where @(xmid,ymid,t) is specified, for given surface 
tension, from the known value of curvature at the 
interface there. Thus, the Gibbs--Thomson condition 
is incorporated in the calculation. The location 
xref = xmid(i,j) + dgX and yref = ymid(i, j) + a&. 
The cell (ireA jref) in which point (xref,yref) lies is 
easily identified. The phase in which (xref, yres) lies is 
known a priori, since, by convention the normal is 
specified to point from the solid to liquid. The values 
of normal gradients in each phase are therefore 
extracted by projecting probes into both phases along 
the same direction. 

Now, to obtain the value of temperature 
O(xref,yref,t), a biquadratic shape function is fit to the 
temperature field in the vicinity of the interface. The 
six coefficients appearing in the biquadratic form, 
F (x,y) = ax2 + bxy + cy2 + dx + ey +J are obtained 
by choosing six cells in the same phase around the 
point (xreLyref) and inverting the resulting 6x6 
matrix by a Gaussian elimination procedure. In this 
process, it is also to be ensured that the six points 
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Fig. 4. Illustration of cut cells, partner cells and method for determining the normal gradient at the interface 
(see cell 16). Normal is projected from point (xmidymid) in cell 16 along the normal at that point. The 
probe of length d, ends at the points (xreAyreJ in each phase. (iresjrefi is the index of cell in which 
(xreAyrej) lies. Solid phase control points are denoted by filled circles, liquid by open circles Partner cells 

are indicated by the linkages between cells. 

chosen for fitting the biquadratic should cover three i 
and three j levels, which is obviously necessary for a 
biquadratic representation to be valid. For example, 
in the case of the cell 16, the probe, extended from the 
point (xmid,ymid) in that cell, ends in cell 10. In order 
to obtain the value of temperature at the point 
(xref,yrej’) which lies in the liquid phase, we need to 
choose six cells in the liquid phase. The choice of five 
cells is straightforward in this case. These are ceils 
numbered 4, 16, 11, 9 and 10 itself. The sixth cell 
remains to be chosen. Depending on which quadrant 
of the cell 10 the point (xref$ref) lies, the cell along 
the diagonal that is closest is picked. In this particular 
example, that cell is numbered 17. Similarly for the 
temperature at (xre@e& i.e. in the solid phase, 
cells 15, 21, 27, 22, 20 and 26 are used. Thus, once 
&xre&ef,t) is obtained from the functional form, 
the normal flux is obtained in each phase from equa- 
tion (17). The %I/,% value in the same phase as the 
control point (i,j) is then fed into the control volume 
expression for that cell. Thus, the flux through each 
face of the control volume shown in Fig. 3(b) has now 
been obtained. 

To ensure conservation in the vicinity of the inter- 
face, however, several other procedures are necessary. 
Consider cells numbered 29 and 30 in Fig. 4. Between 
the two control volumes, there is a trapezoidal piece, 
shown hatched, that is unaccounted for. To enforce 
conservation, it is necessary that the flux across the 
interface computed for cell 29 as described above be 
transmitted to cell 30. This procedure involves the 
identification of three types of cells : 

(a) Bulk cells. A cell that has all its neighbors in 
the same phase. The control volume formulation for 
such cells is straightforward. 

(b) Interface adjoining cell. A cell, such as cell 30, 
that has a neighbor in the opposite phase, but is not 
itself an interfacial cell. 

(c) An interfacial cell. A cell, such as 29, through 
which the interface passes. 

To enforce conservation, for cells of type (b) and 
(c) we need to identify partner cells. The choice of 
partner cells has been indicated in Fig. 4 for each cell 
by the linkages shown. Each interfacial cell is assigned 
one or more partner cells (for example cells numbered 
9, 15, 16). When the control volume fluxes are 
assembled for the interfacial cells, the fluxes into the 
designated partner cells are modified appropriately. 
For example, let cell 29 belong to the solid phase, and 
cell 30 lie in the liquid. While performing the flux 
calculations for cell 29, we compute the aO/an value 
in each phase at the interface. The flux ae/&r value in 
the liquid phase is then transmitted to cell 30. We 
recall that these fluxes also go into determining the 
normal velocity of the interface thereby maintaining 
consistency. In addition, the control volume shape 
and area of the partner cell are redefined, so that the 
cell 30, for instance, absorbs the hatched trapezoidal 
region. In other words, partner cells need to be identi- 
fied and handled unless the interface happens to 
coincide with a grid line, which is generally not the 
case. Thus there are no missing pieces in the mosaic 
of control volumes and all the hatched regions are 
incorporated into the appropriate partner cells, along 
with the fluxes at the interface. This assembly process 
is not difficult to execute. The procedures only apply 
to the one-dimensional interfacial cell array. The eight 
separate cases of interfacial cell and partner types are 
shown in Fig. 4. The control vohtme flux assembly 
procedures have been checked for symmetry by exam- 
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ining the numerical values of the difference coefficients 
for a specified symmetric interface shape and letting 
it evolve over time. Also, the cell assembly direction 
was reversed, so that the interfacial cell and its partner 
exchanged roles, which yielded identical results. 

3.4. Compute the temperature$eld 
Once the fluxes have been assembled for all the cells 

in the domain, the solution for the temperature field is 
performed with an iterative procedure, fully coupled 
with the interface motion. The alternate line SOR 
procedure is employed, leading to a tridiagonal matrix 
equation which is easily solved. The feature of import- 
ance is that, over each iteration, the interface is 
updated, along with the temperature field in each 
phase, and the converged solution yields the thermal 
field as well as interface position at the new time level. 
At this stage, we have already obtained the infor- 
mation necessary for computing the normal velocities 
of the interface. However, the gradients (83/&z),,, are 
now available at the locations (xmid,ymid) in each 
control volume. However, the interfacial markers are 
not usually located at the points (xmid,ymid). Thus, 
one has to obtain the value of the temperature gradi- 
ents at the locations of these markers, in order to 
calculate their velocities. To transmit this information 
to the locations of the interfacial markers, we utilize 
the array corresponding to the locations (xmid,ymid) 
along the interface. The value of the arclength at each 
point (xmid,ymid) while traversing the interface is 
obtained and the (ae/&r),,8 values fit to piecewise quad- 
ratic functions of arclength, i.e. 

(18) 

where $ is the arclength along the interface in the ith 
interface segment and a, b and c are coefficients to be 
determined. Thus, knowing the value of t/j cor- 
responding to the interfacial marker locations one can 

identify the segment in which the point lies and thus 
the value of (8/&r),,, can be calculated from the 
appropriate functional form. The interfacial marker 
is then translated along the normal n. 

4. RESULTS AND dISCUSSION 

4.1. Grid addition and deletion 
The computational domain is configured as shown 

in Fig. 5. The domain is partitioned into three regions. 
Coarse grids are employed in the regions I and III, 
away from the interface, while fine grids are employed 
in the region II close to the interface. However, as the 
interface rapidly grows out of region II there is a need 
for introducing a fine grid that precedes the interface 
in order to be able to calculate the gradients ahead of 
it with desired accuracy. To achieve this, grid lines are 
added such that a sufhciently extended region ahead 
of the interface is replenished with fine grids, through- 
out the evolution of the interface. The values of field 
variables in this region are obtained by linear interpo- 
lation. The grid addition takes place at a frequency 
depending on the extent of the domain traversed by 
the interface. 

4.2. Planar interface propagation 
We first test the solution scheme for accuracy by 

employing known exact solutions for a planar inter- 
face. The Neumann solution for an interface that is 
melting is given by [45] 

0(x, y, t) = 1 -erf 5 
( )i 

erf(e) (19) 

s(t) = Y, -25 Jt (20) 

where 6(x, y, t) is the temperature, S(t) is the inter- 
facial position, and [ is given by the relation 

Y 

b Region111 

Region11 

RegionI 

Y =Y 
x=O,n= 1 AX x = rl,n = nmax 

Fig. 5. Grid arrangement for the computational domain. Region II extends along with the interface. 
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5 ec2 erf(e) = st 
Jn 

(21) 

St is the Stefan number given by C, (I$- T,,,)IL. The 
boundary conditions are, B(.Y, y,, t) = 1, i.e. at the top 
of the bound&y, y, is fixed and 6&y, t) = 0, 
Y < S(t), i.e. the solid is at uniform temperature. The 
initial conditions are specified at time to > 0, taking 
account of the singularity at t = 0. Thus, 

t&y, to) = 1 -erf 2 ( )I erf(O 
0 

(22) 

and the initial interface location is given by the 
expression, 

S(&) = 2U0) (23) 

x 

(9 
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where 1 is a constant. Figure 6 (upper) compares 
the exact and numerical solutions obtained for Stefan 
number St = 0.1303, < = 0.25, y, = 4. A 41 x 41 grid 
is used. The initial position of the interface was at 
y = 3.91. The computation was performed for 1000 
time steps and over the period of calculation the com- 
puted and exact interface locations as well as tem- 
perature fields are in excellent agreement. 

A more stringent test of the planar interface propa- 
gation is in computing the higher Stefan number case, 
St = 2.8576, 5 = 0.9, shown in Fig. 6 (lower). The 
computations are performed with 61 grid points along 
the y-direction. Again excellent agreement is obtained 
for computations over 100 time steps. For this higher 
Stefan number case, the interface moves more rapidly 
and a significant portion of the domain (Y, = 4) has 
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Fig. 6. Comparison of exact (* symbol) and computed (line) solutions for different Stefan numbers for 
propagation of a planar interface. (i) For Stefan number = 0.1303 : (a) interface position against time ; (b) 
temperature along Y at different times. (ii) For Stefan number = 2.85, (a) interface position against time; 

(b) temperature along Y at different times. 
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been traversed by the interface. From the above exam- 
ples, it is clear that for a planar interface, the con- 
servation statement across the interface is honored 
by the control volume formulation and the interface 
position is accurately obtained for a wide range of 
Stefan numbers. 

4.3. Non-planar interfaces 
In the computations to follow, we employ nmax 

grid points along the x-direction, where nmax was 2 1, 
41 or 81. Since x = 4, and y, = 40 in all subsequent 
calculations, we have Ax = 4/nmax. Depending on the 
value of Ax, we employ grid points in the region II, 
such that AJ+, = Ax. As mentioned before, as the inter- 
face grows and propagates grids are added ahead of 
and deleted behind the interface. Thus the extent of 
region II increases as the computation proceeds. The 
domain of computation is shown in Fig. 2. The liquid 
end was maintained at 0, = -40, with the solid side 
at 0 = 1. The side boundaries are adiabatic, i.e. 
30/8x = 0. The Stefan number for the system is 1 as 
obtained from the scaling procedure. Thus, the sol- 
idification process is being viewed not at the diffusion 
time scale, but at the time scale corresponding to 
interface motion. With this scaling, the heat con- 
duction equation is nearly quasistationary. 

4.3.1. Zero surface tension. The evolution of an iso- 
thermal interface was tracked on grids with 
nmax = 21, 41 and 81. The results are presented in 
Fig. 7. Clearly, for the isothermal interface the results 
are governed to a large degree by the grid spacing. 
The behavior of interfaces with zero surface tension 
has been under scrutiny, with calculations indicating 
cusp-formation or tip-splitting [46]. Since, in the 
absence of surface tension, no stabilization mechanism 
exists at any length scale, i.e. there is no smoothing 
effect, disturbances of all wavelengths are ampltfied. 
Thus, finite-time singularities can form on the inter- 
face. Our calculations show that on the nmax = 21 
grid, displayed in Fig. 7(a), the perturbation grows 
for the period of calculation and loses symmetry. The 
source of asymmetry comes from the uni-directional 
procedure used to define the interface shape and tem- 
perature gradients. F’or nmax = 41, Fig. 7(b), the 
interface first loses its symmetry, similar to the 21 grid 
case, and as time elapses, the perturbation wave- 
lengths permitted by the grid lead to a tip-splitting 
instability. A trough is formed upon tip-splitting, and 
rapid accumulation of latent heat ensues there, leading 
quickly to the formation of a cusp in that region. Thus, 
the sharp corner created there cannot be smoothed out 
in the absence of surface tension. For an even finer 
grid, nmax = 81, as shown in Fig. 7(c) the interface 
becomes unstable to grid-scale oscillations. These 
short wavelength oscillations grow faster than the dis- 
turbances that are captured on the coarser grid and a 
cusp rapidly forms at the boundary where the imposed 
periodicity condition becomes incompatible with the 
asymmetric breakdown of the interface. The results 
on this fine grid correspond to our previous results 

obtained by employing boundary-fitted adaptive grids 
[26]. There, in the absence of surface tension, the 
cusp formed& the boundary, and short wavelength 
oscillations developed on the interface. The simulation 
in this case could, however, be carried farther than 
previously, because the grid is not required to conform 
to the interface. The behavior of the interface under 
different grid resolutions has been investigated. It is 
interesting that with the different grid resolutions, dif- 
ferent modes of instability, including asymmetry, singu- 
larities and tip-splitting can appear. Figure 7 indicates 
that there is no preferred morphological shape for the 
zero surface tension case. Furthermore, because there 
is no prevailing physical length scale contained by the 
instability development itself, the numerical resol- 
ution, in effect, controls the smallest length scales of 
the instability. As the grid is refined, finer instability 
scales appear, implying that no grid independent solu- 
tion can be obtained with zero surface tension. It is 
noticed in each case that asymmetry develops in the 
interface profiles. It was found in most of our cal- 
culations where the interface was highly unstable (i.e. 
for zero and low surface tensions) that asymmetric 
breakdown persisted. In addition, the breakdown 
always occurred on the same side of the domain, 
namely on the left. Such asymmetric breakdowns have 
been remarked upon in connection with experiments 
on the Saffman-Taylor instability [5] and in the 
boundary integral simulations of ref. [30]. In the latter, 
when symmetry was not imposed, the interface 
became unstable asymmetrically. When sufficient sur- 
face tension is present, it will be shown that the asym- 
metry is eliminated. Thus, for the highly sensitive low 
surface tension cases, any small noise generated in the 
course of the computation leads to a breakdown of 
the smooth perturbation. Here the first appearance of 
asymmetry comes from the bias of the line iterative 
procedure in the course of computation. The other 
procedures, namely assembly of control volumes, 
definition of partner cells and interface definition were 
performed in the reverse order and the asymmetry was 
found to persist. 

4.3.2. Low surface tension. The sensitivity of the 
solution procedure can be demonstrated by adding 
a surface tension yeK = low3 where, as defined 
previously, yeK = s&,,y*. Since the curvature is O(l), 
the Gibbs-Thomson condition [ 161 will lead to inter- 
face temperature variations of 0(10e3). This modi- 
fication of the temperature at the interface is extremely 
small when compared to the non-dimensionalized 
undercooling value T, = -40 imposed at the liquid 
boundary. When this small value of surface tension is 
added for the nmax = 81 calculation, it eliminates the 
singularities at the interface. However, the per- 
turbations along the interface continue to grow. Fol- 
lowing the interface evolution further, a series of insta- 
bilities develop in the vicinity of the tip and result in 
the asymmetric convoluted structure shown in Fig. 
8(a). The interface is highly distorted in this case, 
demonstrating the ability of the numerical technique 
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Fig. 7. Development of interface for zero surface tension for various grid resolutions. (a) Interface shapes 
at different time instants for nmax = 21 grid, up to time = 1.8, in steps of dt = 0.2. Symmetry is broken in 
this case. (b) Interface shapes for nmax = 41 grid, up to time = 1.8, in steps of df = 0.1. In this case 
symmetry is first broken, and tip-splitting follows. (c) Interface shapes for nmax = 8 1 grid, up to time = 0.8 
in steps of dr = 0.1. Computations were stopped early in this case due to cusp formation at the boundary. 

Note that shorter wavelengths are allowed on this tiner grid, which become unstabIe more rapidly. 

developed here to handle such strongly multiple- distorted nature of the interface, even for such a low 
valued shapes. It is aIso noted that, while one side value of the interface temperature. Furthermore, the 
of the interface appears to break into a cascade of clustering of the isotherms to the left of the tip clearly 
protuberances in the vicinity of the tip, the other side drives the instability in that region, leading to a mutu- 
remains quite stable. The further development of the ally enhancing dynamic process between the interface 
side branches is found to be arrested due to the and thermal field. In comparison the isotherms on the 
accumulation of heat in the sides of the growing finger. right side are seen to be less crowded. With regard to 
The imposition of the adiabatic side-wall condition the question of asymmetry, as already pointed out, 
prevents the removal of heat from this region. Figures this feature results from the fact that our cell cutting 
8(b) and (c) show the isothermal contours in the vicin- procedure is conducted along a given direction, which 
ity of the interface in the early and later stages of the can create initial noises along that direction. These 
development shown in Fig. 8(a). As is clearly seen, the initial noises, once formed, influence the paths of sub- 
temperature held calculation responds to the highly sequent development morphologically. However, this 
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Fig. 8. Development of interface for low surface tensions (10e3) on nmax = 81 grid. From time t = 0.8 to 
c = 2.0. (a) Interface shapes at different time instants showing successive instabilities. (b) Isotherm plot at 
early stage showing asymmetry. (c) Isotherms at later stage showing response of thermal field to distorted 

interface even for the very low value of surface tension. 

aspect does not affect the solution accuracy when sur- 
face tension plays a more substantial role, as will be 
discussed later. 

For low surface tension cases computational studies 
that impose symmetry result in interface patterns 
different from those without such constraint, due to 
the fact that the morphology of the interface is highly 
path dependent. Any change in the boundary con- 
ditions or computational details will create different 
numerical noises, which in turn, yield different final 
interface shapes. To illustrate the impact of enforcing 
symmetry on the interface for low surface tension, we 
compute the development of only half the per- 
turbation by imposing symmetry condition for the 
other half. For the nmax = 81 case, with low surface 
tension yM = 10e3, the resulting symmetric structure is 
shown in Fig. 9(a). There is again a series of insta- 
bilities in the vicinity of the tip remi&cent of the 
structures observed in the SaEmanATaylor exper- 
iments with tip bubbles [47J. On a tiner grid, 

nmax = 161, a similar phenomenon results, as shown 
in Fig. 9(b), except that in this case the tip breaks 
down at shorter wavelengths, and the instability devel- 
opment is much more rapid than in the case of the 
coarser grid calculations. Thus, imposition of sym- 
metry does not influence the stability of this low sur- 
face tension interface. The shape of the computed 
interface is however, very different from the case 
where symmetry is not explicitly imposed i.e. Fig. 8(a). 
Nevertheless, the changing wavelengths in both Figs. 
8 and 9 indicate that grid resolution is the main cut- 
off length scale with zero or low surface tension. It 
should be clarified however that, as long as surface 
tension is non-zero, there exists a physical length scale 
to control the morphological length scale of the inter- 
face. The results discussed so far, however, are for 
very low surface tensions, which creates a length scale 
too sm&I to be resolved by the grid spacing employed 
here. With zero surfacetension, existing theory indi- 
cates that no grid independent solutions exists [16] ; 
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Fig. 9. Effect of imposition of symmetry on development of interface for low surface tension (yCR = IO--‘) : 
(a) on nmax = 81 grid (b) on nmax = 161 grid. Interface shapes are shown after reflection across the 

centerline. 

with a finite surface tension, however small it is, 
unique solutions do exist, and the issue then is numeri- 
cal resolution. To ascertain the numerical accuracy of 
the present algorithm, a higher effective surface ten- 
sion is considered next. 

4.3.3. Stablefingers for higher surface tensions. The 
extreme sensitivity of the low surface tension cases to 
grid spacing, which yields widely different behaviors 
upon refinement, prompts us to confirm grid inde- 
pendence for the more stable higher surface tension 
cases. As already explained, this exercise can be con- 
ducted only for non-negligibleeffective surface tension 
cases. It should be again emphasized that the so-called 
low and high surface tensions are defined with respect 
to our grid resolution. Furthermore, it is the effective 
surface tension under consideration here, which 
involves both material properties and operating con- 
ditions, and hence can vary substantially. Figure 10(a) 
compares the interface shape and velocity of an inter- 
face with yeE = lo-‘, nmax = 41 (full lines) and 
nmax = 81 (open circles). While in the initial stages 
of development the profiles as well as interface vel- 
ocities are in agreement, as the perturbation develops 
to large amplitudes the coarser grid calculation under- 
estimates the instability magnitude. In fact the final 
stage of the fine grid calculation shows a vastly differ- 
ent value of velocity. Figure 10(b) compares the same 
interfacial development for nmax = 81 (full line) and 
nmax = 161 (open circles). As can be seen, the two 
calculations maintain close consistency, even in the 
large amplitude stage. The velocities in the final stage 
are in close agreement. Thus, for high enough surface 
tension, grid effects are suppressed and the stable 
finger growth converges under grid refinement. In sub- 
sequent calculations we employ nmax = 8 1. 

Next, we present results of long time simulation of 
two different yeR to further contrast the effect of surface 

tension. Figure 11 shows the development of a finger 
for yes = lo-*, along with the derivatives along the 
interface. The first observation to make regarding 
these results is the well maintained symmetry of the 
front. Figure 12 shows the development of the finger 
for yeR = 10-l. The interfaces are shown at the same 
instants of time. The effects of surface tension are 
brought forth by comparing these two sets of results. 
The qualitative features are in agreement with the 
computations of ref. [31], who used the boundary 
element method. In particular, the rapid accumulation 
of heat on the sides of the finger leads to a rapid 
slowdown of the interface in that region. The front 
propagates upward farther in the higher surface ten- 
sion case before the instability gathers momentum. 
The amplitude of the ycK = lo-* finger (aspect 
ratio z 4) is greater than the yeR = 0.1 finger (aspect 
ratio x 2.5), demonstrating the higher degree of insta- 
bility for lower surface tension. The higher surface 
tension (10-l) causes the finger to spread laterally, 
leading to a multiple-valued interface with respect to 
x. The sides of the lower surface tension (lo-“) finger 
are almost flat and vertical, indicating minimal lateral 
spreading. The circular arc fits for representing the 
interfacial segments hold up very well even for such a 
flat vertical surface. The finger in the higher surface 
tension case has a more rounded tip and there is a 
wide region near the tip where the curvature is nearly 
constant. In contrast, the yefi = lo-* finger is sharper 
at the tip. At the stage of the development shown, as 
seen from the plots of interfacial derivatives against 
x, the interfaces in both cases appear to have attained 
stable, shape-preserving growth. However, as 
observed by Saffman and Taylor [3], over a substantial 
length and time, the growth velocity of the finger is 
not constant and the tip is still accelerating, due to the 
finite domain size in our calculation. As the finger 
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reaches an asymptotically invariant shape, the tip 
velocity will approach a constant value. 

Figure 12(b) shows the isotherms in the vicinity of 
the interface for the ycfl = 0.1 case. The finger in this 
case extends from about Y = 12 to 21. Clearly the 
clustering of the isotherms at the tip drives the insta- 
bility. The Gibbs-Thomson effect causes the isotherm 
corresponding to 8 = - 2.2 x 10e2 to curve inward iin 
the tip region where the curvature is positive. The 
symmetry of the isotherms contkms our previous 
statement regarding the ability of the surface tension 

to suppress asymmetry. Figure 12(c) shows isotherms 
across the interface. The effect of the Gibbs-Thomson 
condition is seen to propagate far down the solid finger, 
as evident from the curvature of the -2.19 x 10e2 
isotherm at Y = 18, which is well into the solid finger. 
The curvatures of the isotherms however change sign 
further down, as for the 0 = 3.53 x lob3 isotherm. The 
isotherm plot for ydi = 0.01, Fig. 11 (b), shows no sign 
of the Gibbs-Thomson condition for the available 
contour resoWion+ The first negative isotherm is in 
the correct position since the tip of the finger is located 
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approximately at Y = 27, in agreement with the iso- 
therm plot. 

5. CONCLUSIONS 

We have presented a method for tracking highly 
distorted fronts on fixed Cartesian grids. The facility 
afforded by the Cartesian grid, in terms of setting up 
the control volume formulation, leads to a capability 
of handling the morphologically complex moving 
interface. In contrast with other Eulerian methods, it 
is possible here to explicitly specify the location and 
shape of the interface and to apply the boundary con- 
ditions at the exact location of the interface. In strictly 
Lagrangian methods, on the other hand, the grid 
translates with the interface and needs to be period- 
ically smoothed and redistributed. The non-bound- 
ary-fitted grid layout here circumvents such problems. 

For a planar interface the Neumann solutions for a 
melting problem have been accurately reproduced by 
the numerical solutions. In a follow-up work, detailed 
comparison has been made between the present algo- 
rithm and a body-fitted computational method in the 
context of irregularly-shaped phase boundary [48]. 
Favorable agreements have been obtained for several 
different test problems, with and without a moving 
boundary. The results for the deformed interface illus- 
trate the effects of surface tension. In the absence of 
surface tension, singularities quickly develop on the 
front for sufficient grid resolution. The grid resolution 
governs the wavelength of noise permitted on the 
interface and thus affects interfacial development. In 
particular, at very low surface tensions the dis- 
turbances allowed by the grid strongly influence the 
fate of the interface. These aspects are all consistent 
with the existing theory [l, 12,161. Thus care needs to 
be exercised in interpreting results in this range of 
surface tension parameter. For sufficient interfacial 
tension, the results have been demonstrated to con- 
verge under grid refinement. The initial perturbation 
develops in time into long fingers, as in the Saffman- 
Taylor problem. The qualitative features are in agree- 
ment with other simulations of the fingering phenom- 
enon. The finger shapes reached a steady-state, while 
the tip accelerated due to the fixed domain size and 
boundary conditions. 
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